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TEM Pseudoelliptic-Function Bandstop Filters
Using Noncommensurate Lines

JOHANNES A. G. MALHERBE, MEMBER, IEEE

Abstract—A synthesis procedure for distributed bandstop filters that
approximate an elliptic-function response is described. Existing tables of
lumped constant elliptic-function filters are used together with an
approximate transform that exchanges commensurate Foster sections
for noncommensurate pairs of stubs or coupled lines. The method is
usable for all bandwidths up to about 100 percent, providing that net-
works with a relative bandwidth of more than 50 percent are considered
to be pseudo-low-pass.

INTRODUCTION

HE advantages of elliptic-function filters with respect

to high rates of cutoff are well known and several
authors have presented design procedures for such filters
when applied to TEM distributed parameter networks.
Horton and Wenzel [1] proposed a method based on non-
redundant network synthesis, but found the procedure
tedious and the networks nonrealizable in most cases, due
to the difficulty of the physical constructions associated
with microwave Brune sections. The use of digital lines in
a design based on a lumped-element prototype [2], [3] has
found wide application but is inherently wide band, and
can only be constructed in machined form.

The methods proposed by Levy and Whiteley [4] and
Schiffman and Young [5] are based on the use of redundant
unit elements, employing the transforms of Kuroda [6]
and Kuroda-Levy [7]. These methods are the only ones
suitable for the synthesis of etched (stripline or microstrip)
bandstop filters with an elliptic-function response. In all
cases limits of physical realizability are set by the inability
to construct the necessary Foster or Brune sectioiis, leaving
a gap in realizable bandwidth between approximately 10
and 80 percent.

Common to all the above mentioned design methods is
the use of Richards’ [8] transform. Under this transform
open- and short-circuit stubs of the same (commensurate)
length are transformed to capacitors (C) and inductors (L).
In specifying that all elements must be commensurate, ease
of synthesis (and analysis) is thus gained, at the expense of
one order of freedom. Consequently, it is in most cases
necessary to introduce redundancy by means of unit
elements (quarter-wavelength lines) which have no direct
lumped-element equivalent under Richards’ transform but
are extremely useful in TEM network theory and in this
instance serve to ease realizability. Unit elements are either
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introduced in a nonredundant synthesis procedure, in
which case they contribute to the network performance, or
through redundant transformations from the input and
output ports in which case they leave the amplitude re-
sponse of the network unaltered.

Fig. 1 shows the effect of Richards’ transform on a
lumped-element fifth-order elliptic-function low-pass filter.

Transmission zeros occur at the center (commensurate)
frequency of the distributed response, as well as in pairs
equispaced about w,. Each distributed Foster or Brune
section contributes one pair of zeros, while remaining
commensurate.

In this paper a method is proposed in which TEM
Foster sections are exchanged for pairs of noncommensurate
stubs! with their transmission zeros equispaced about the
center frequency w, that yields a design that has a pseudo-
elliptic-function bandstop response.

NONCOMMENSURATE PARALLEL-FOSTER APPROXIMATION

Consider an open circuit and a short-circuited stub of
electrical length 8, under the transform

p = jtan 6/2,
The input impedances then become, respectively,
Zso = pL + L, L = Z,/2, C =2/Z,
pC
and
|
o ()
Z =
s¢ ___pql_, L =22, C"z%'
pL + — ¢
pC

By application of this transform to the network in Fig. 2(a),
which is a parallel-Foster section as shown in Fig. 2(b)
under Richards’ transform, the equivalent network of Fig.
2(c) is obtained.

Consider the circuits of Fig. 2(c) and (d). By equating the
admittances of the parallel networks, it is found that they
are identical if

Z
ZA=71(1+1/f2)=ZD

4
ZB=71(1+f2)=ZC

' For simplicity the word ““stub’” in this context is taken to include
parallel coupled lines, etc., that yield a cascade of unit element and
TEM capacitor.
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Elliptic-function filter response. (a) Lumped-clement low

pass. (b) Distributed bandpass.

N

@) (b)
Fig. 2.

%L:Z,Iz
C= 2/ Hh
%&l/zzz %L:zzz Cﬂ/zBI Ic:’/ZD

L=Zc

© @

(a) Equivalent representations of microwave Foster sections.

(b) Under Richards’ transform. (¢) Under the p-transform. (d) An

equivalent of (c).

with
f=vE+1+k )
Vi = 2,]Z,. 2

The frequencies f = \/ Zg/Z, and 1/f are the resonant
frequencies of the two parallel-Foster circuits of the network
of Fig. 2(d). The admittance of this circuit can be written
as

1 + 1

Y.(p) =
D)= orp T 2o + U

€)

where
%=%Uﬂm

Clearly, (3) describes the parallel connection of two open-
circuit stubs of the same characteristic impedance 2Z,
scaled to resonate at frequencies of f and 1/f, respectively.
A noncommensurate approximation to this network is now
defined as two parallel stubs, resonating at f and 1/f, with
their impedances adjusted to give the same admittance

poles and zeros as Y,(p), up to a frequency just below 2w,.
Defining

4 -
w; = wy—-tan~1 f

14

w, = a)oi‘tan"1 1/f
n

p, = jtan (E 2)
4

then
1 + 1
Zof'(py + 1p)  Zolf'(p2 + 1/p2) )

To obtain the same position for the admittance pole of
v«{p) and y,(py,p,), the following must hold:

Lf'(py + 1py) + 1f' (P2 + 1/P2)]lo=0s = O

Yu(P1,02) =

Setting
2
- ()
4/ tan~!f
2
1
0, = (1”) — 4
> \4/ tant1jf @
it follows that
cot ,’ — tan §,’
f=j 2 o ®)
tan 0," — cot 0,
The characteristic impedances are then given by
Z, =2Z,f"  Z) =2Z[f" ©®
and the stub lengths by
l = ———v l = v 7
' 8nw, 2 8w, @

where v is the propagation velocity in the dielectric.

The noncommensurate approximation improves as the
transmission zeros of the prototype filter approach the center:
frequency of w,, and degenerates into a commensurate
network if all transmission zeros lie at w,. The transmission
zeros move away from w, with increasing bandwidth as
well as increasing modular angle of the elliptic-function
prototype, causing an increase in error due to the non-
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Fig. 3.

Calculated transmission response for fifth-order bandstop filter, for both exact and approximate realizations.

(a) Expanded response of the first stopband. (b) Expanded response of the passbands.
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Fig. 4. Physical noncommensurate realization.

TABLE 1
PERFORMANCE COMPARISON BETWEEN EXACT VALUES
AND APPROXIMATION (dB)

o MggthR BANDWIDTH LOWER PASSBAND STOP BAND UPPER PASSBAND
() N EXACT | APPROX. EXACT | APPROX. EXACT | APPROX.
50 | s8° 20 1,25 | 1,23 40,3 | 40,4 1,25 1,25
30 1,21 40,5 1,25
50 1,18 40,8 1,37
10§ 50 30 G,045] 0,041 31,02 | 31,18 0,045 | 0,047
50 0,035 31,52 0,082

commensurate approximation. Fig. 3 shows the calculated
transmission response of a fifth-order elliptic-function
bandstop filter with a modular angle of 56°, a 50-percent
(—1.25-dB) ripple and a bandwidth of 50 percent, for both
the approximation and the exact Foster sections.

Table I shows calculated error values of two prototypes
for various bandwidths. In all cases the approximation is
seen to have slightly less attenuation in the lower passband,
slightly more in the upper passband, and an increased
stopband attenuation.

SYNTHESIS PROCEDURE

Due to the extremely wide range of bandwidths that can
be achieved by this type of filter, a simple unified synthesis
procedure is not possible. A general approach can, however,

be outlined and is illustrated by two design examples.
Firstly, a prototype that will give the desired response is
chosen from tables [9]. The prototype is then scaled for
bandwidth and impedance [6]. As realization is simplest
when the final network consists of shunt capacitors spaced
by unit elements, a 7-type network must be chosen for
third-order designs, a II-type for fifth order, and so on.

By means of Kuroda and Kuroda-Levy transforms, unit
elements are now transformed into the network from the
input and output ports, until a realizable network is ob-
tained; this is indicated when the network consists only of
alternate parallel capacitors and shunt Foster sections
spaced by unit elements. A good description of this process
is given in [5].

The next step is to replace each shunt Foster by its non-
commensurate pair of shunt “capacitors” (stubs). The
impedance of each stub is then evaluated; if the impedance
is below about 150 Q,2 it can be realized as a shunt stub.
Between about 150 and 300 Q, Schiffman’s spurline [10] is
used and above 300 Q, realization is by means of coupled
lines. Sections of the type shown in Fig. 4 can be used to
realize the noncommensurate elements. A proof of this type
of network is given in the Appendix.

2 An exact value cannot be given here as this would vary with the
material used. Quoted values are for the materials mentioned in the
design examples.
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Fig. 5. Design of a third-order bandstop filter. (a) Lumped-element
low-pass elliptic-function prototype, unscaled. (b) Impedance and
bandwidth scaled and transformed network. () Its noncommensurate

approximation. (d) Etching mask.
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Fig. 6. Frequency response of the filter of Fig. 5. (Third order.)

DEesiGN EXAMPLES
A. Third-Order Network
Although very simple, an example of a third-order net-
work is included because it illustrates the principle involved

rather clearly. Fig. 5(a) shows a third-order lumped-element
prototype with a —0.28-dB (25-percent) ripple level and

modular angle 8 = 23°. After impedance (50 Q) and band-
width (75-percent) scaling and the application of Kuroda
transforms over the end inductors, the network of Fig. 5(b)
is obtained. Application of the noncommensurate approx-
imation yields the configuration of Fig. 5(c): line lengths
and impedances are shown for a 1.97-GHz center frequency.

The filter was constructed in 3.175-mm (}-in) GPS
polyolefin stripline with the end sections realized as stubs,
folded back to conserve space. The noncommensurate stubs
are realized as spurlines. The physical layout of the etching
mask is shown in Fig. 5(d). The measured frequency response
characteristics are shown in Fig. 6.

B. Fifth-Order Network

As a fifth-order design example, a prototype with —0.18-
dB (20-percent) ripple level and 40° modular angle was
chosen [Fig. 7(a)]. The bandwidth is 50 percent and the
filter resonates at 1.97 GHz. After the necessary scaling and
transforms, the network of Fig. 7(b) is obtained.

All sections except the 145-Q stub C,_, have been manu-
factured as spurlines. The center pattern is shown in Fig.
7(c). Construction was in 6.35-mm (4-in) GPS polyolefin.
Frequency response characteristics are shown in Fig. 8.

CONCLUSIONS

A design procedure that yields easily manufactured etched
stripline bandstop filters that approximate an elliptic-
function filter response, has been presented. The proposed
method can be used with accuracy up to 50-percent band-
width, providing the form of the spurious responses is not
of importance, and up to 80 or 100 percent in bandwidth
if the network is to be used in low-pass applications.
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Fig. 7. Fifth-order filter design. (a) Lumped-element prototype. (b) Scaled and transformed network showing line
lengths for 1.97-GHz center frequency. (c) Etching mask.
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Fig. 8. Frequency response of fifth-order bandstop filter.

APPENDIX

An equivalent circuit for two coupled lines is derived by
Wenzel [11] by transforming the capacitance matrix, as
shown in Fig. 9(a) and (b). The capacitance matrix of Fig.
9(a) is given by
[ - | I

By multiplying the last row and column by #/, then

[ = | |

€11 + ¢43
—C12

—C12
€12 + Ca3

€11 + €12
!
- 612

- nlclz
R3(c15 + €35)
If

Ci12
Ci2 + €35

then ¢,,” = 0 and the network of Fig. 9(b) results. The
equivalent of this configuration is given by the netwoik of
Fig. 9(c): between 1-1’ and 2-2’ there exists a unit elefent,
of characteristic impedance

Z, =1 __
‘/sr ci1'le
with a unit element .
22 = __7],__
\/8,. 612 /8
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Fig. 9. Capacitance matrix transformation for the derivation of a network model for coupled lines, (a). The capacitance

matrix is transformed, (b), with the equivalent circuit as in

connected between 4-1 and 3-2, 4’ and 1’, and 3’ and 2’
being the same points. As Wenzel points out, this is equiva-
lent to connecting a transformer of turns ratio 1/n’ in
cascade with 4-4' and 3-3’.

If, instead of applying the relevant port conditions, the
transformers, of turns ratio n = 1/n’ are inserted, the four-
port network model of Fig. 9(d) results, with

n=1+%22,
Ci2
With known values of Z,, Z,, and », the normalized
capacitances can then be calculated from

i 1 1 }
E= ~—— {— - - 1 —_—
c11/ \/8,- {Z1 (n )22
N n
e = —— —
€12/ \/8, Z
R Gl
€22/t \/;, Z

(¢). By transforming back, the network model (d) is obtained.

The relationship between ¢, ¢4, €5, and line dimensions
is well known [12].

Consider next the network as shown in Fig. 10(a), with the
equivalent model of Fig. 10(b), in which line lengths and
impedances are indicated. Providing the transformer turns
n: 1 remain the same, the transformers (4) can be removed,
to yield the network of Fig. 10(c) which simplifies to 10(d)
and proves the network equivalence. This method is readily
linearly extended to include three coupled lines and con-
sequently makes the analysis of very complicated networks
feasible.
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